SHOT OUTCOME AS A FUNCTION OF IMPACT LOCATION AND RACKET KINEMATICS IN THE BADMINTON JUMP SMASH

Mark King, Idrees Afzal, & Stuart McErlain-Naylor

FASTEST BADMINTON SMASH - 426 km/h

QUANTIFY SHOT OUTCOME

- shuttle speed
- shuttle direction
 - downwards angle
 - direction relative to court and opposition

CONTRIBUTING RACKET FACTORS

- racket head speed
- racket angle
- racket-shuttle impact location
- racket properties & strings

PURPOSE

- assess shot outcome as a function of:
 - racket head speed
 - racket angle
 - racket-shuttle impact location

quantify elite player variability

ignoring effect of racket & strings

DATA CAPTURE

- Vicon Motion Analysis System (400 Hz)
- reflective markers on racket and shuttle

PARTICIPANTS

- 14 international players
 - 2016 All England Championships
 - 2017 World Championships

BADMINTON WORLD CHAMPIONSHIPS 2017

MOTION CAPTURE

RESULTS

DATA SUMMARY

shuttle speed

- mean: 290 km/h

- range: 192 to 368 km/h

racket speed

– mean: 203 km/h

- range: 145 to 253 km/h

fastest per player

individual player

fastest three

IMPACT LOCATION

SHUTTLE SPEED

- shuttle speed variation explained by:
 - racket head speed (70%)
 - longitudinal impact location (86%)
 - medio-lateral impact location (89%)

IMPACT LOCATION

SHUTTLE SPEED

- shuttle speed variation explained by:
 - racket head speed (70%)
 - longitudinal impact location (86%)
 - medio-lateral impact location (89%)

- 'sweet region':
 - 1.1 cm mediolaterally
 - 3.0 cm longitudinally
 - less than 5% reduction in shuttle speed

IMPACT LOCATION

- vertical shot direction explained by:
 - racket angle at impact (64%)
 - longitudinal impact location (72%)

- 53% lateral deviation explained by:
 - medio-lateral impact location

shot outcome is determined by:

- shot outcome is determined by:
 - racket head speed and angle at impact

- shot outcome is determined by:
 - racket head speed and angle at impact
 - impact location of shuttle on racket face

- shot outcome is determined by:
 - racket head speed and angle at impact
 - impact location of shuttle on racket face

greater understanding of margin for error

FUTURE WORK

- methods for increasing margin for error:
 - technique
 - racket properties

THANK YOU

PBL - FASTEST SMASHES 2017

male	speed km/h	female	speed km/h
Mads Pieler Kolding	426	P V Sindhu	375
Bodin Isara	419	Gabrielle Adcock	359
Ajay Jayaram	419	Carolina Marin	357
Goh V Shem	419	Ashwini Ponnappa	356
Vladimir Ivanov	419	Jwala Gutta	348
Markis Kido	415	Saina Nehwal	333
Sameer Verma	402	Nitchaon Jindapon	329
Jan O Jorgensen	401	Cheung Ngan Yi	324

QUESTIONS

- why can some smash much faster than others?
 - strength
 - technique
 - grip
- what is the limit for an individual?
- what does optimum look like?
- how to coach young players to smash faster?